
Algebraic Constraint Programming∗

Ian P. Gent†

1 Summary

I aim to introduce Algebraic Constraint Programming as a new means of solving hard search problems such as
scheduling and optimisation. This will be done by exploiting and integrating the computational power of two
mature technologies, Constraint Programming and Computational Algebra.

To achieve my aim, my objectives are as follows:

1. To exploit algebraic structure in constraint programs, enabling constraint programs to be written much
more simply and effectively.

2. To introduce algebraic algorithms for constraint propagation.

In the rest of this document, I first explain some background material and a motivating example for the research,
and then outline the research I propose.

2 Background

Combinatorial Search and Constraint Programming Combinatorial search is arguably the most fundamen-
tal aspect of Artificial Intelligence (AI). Some of the most basic research questions in search remain open, the
most obvious example being the question P=NP? The research area is extremely active. At the same time, the ex-
isting technology of search in AI has become very important commercially, through the area known as Constraint
Programming (CP). CP relies on efficient ‘propagation’ algorithms, deducing derived consequences of current
facts. Software packages such as Eclipse from IC-Parc and Solver from ILOG are used widely on problems such
as workforce management at BT and BA, resulting in savings of many millions for the companies concerned.

Computational Algebra There is now a wealth of research into computational techniques for problems in
group theory and other algebraic systems. Built on this are remarkably powerful computer programs. For ex-
ample, the systemGAP contains millions of lines of code, some of it peer-reviewed in a style similar to journal
papers [2]. A flexible interpreter allows deep questions to be answered easily, whileGAP also serves as a
programming language with access to primitives performing complex operations on groups.

A motivating example: All-different The ‘All-different’ constraint occurs very frequently in constraint pro-
grams. For example, one states that exam times for an individual student’s courses must all be different. Régin’s
algorithm makes constraint propagation very efficient [6], but this is only available to a user if it has been imple-
mented specially in the constraint language being used.1 On n variables, the constraint can be decomposed into
n(n − 1)/2 separate not-equal constraints, without changing the set of solutions. But this has many disadvan-
tages. At the same time as enlarging the space and run time requirements, code has to be written to express all
O(n2) constraints, and less propagation can be performed than in the specialised algorithm. Yet the constraint
can bepresentedvery efficiently algebraically. It is simply the constraintx 6= y, acted on by the symmetric group
on all the variables to be made different.

3 Proposed Research

The aim of Algebraic Constraint Programming is to allow algebraic structure in constraints to be used as the
basis for a constraint modelling language, and then to implement specialised algebraic algorithms for constraint

∗Generously supported by a Royal Society of Edinburgh SEELD/RSE Support Research Fellowship, for which I am very grateful.
†School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SS. Email ipg@dcs.st-and.ac.uk.
1For example, it is available in ILOG Solver but not in Eclipse, because Régin works for ILOG!

1



Algebraic Constraint Programming 2

propagation.

Algebraic Structure in Constraint Programs There have been efforts to introduce new modelling languages
to simplify the construction of logic programs: for example the language OPL provides a modelling front-end
to ILOG Solver [5]. A language such as OPL does simplify the statement of constraints like All-different, but
with two problems. First, the result in the target constraint programming language is the explicit presentation of
each of theO(n2) constraints, with the disadvantages mentioned above. Second, it provides little help expressing
more complicated combinations of constraint. For these, the power of computational algebra is necessary, as for
example in the Alien Tiles puzzle [3]. In this example, we wrote aGAP program to calculate the 729 necessary
constraints, and wrote these out as an ILOG Solver program. These constraints would have been very hard to
write by hand, and to automate their construction in any non-algebraic language would have meant reinventing
many wheels already turning inGAP. While we retained the disadvantage of writing out constraints explicitly, we
demonstrated the expressive power ofGAP as a high level constraint language. In this section of my research, I
will first provide an interface between the algebraic language and the constraint programming system, and second
provide constraint constructs inGAP to exploit this interface. This will greatly simplify the coding of algebraic
constraint programs. A particular advantage will be the easier exploitation of symmetry in constraint programs,
based on the method I introduced with Barbara Smith [4]. This research is now funded by EPSRC and is laying
some groundwork for the initial integration of constraint programming and computational algebra.

Algebraic Propagation Algorithms The most exciting aspect of my research will be to develop novel con-
straint propagation algorithms exploiting the algebraic structure of constraints. The best algorithm for general
constraint propagation is GAC-schema [1]. This algorithm allows special purpose algorithms to be incorporated
for specialised sets of constraints. This is ideal for the integration of algebraic forms of reasoning. This has the
huge advantage that it allows a set of constraints, as expressed in the algebraic modelling language, to be treated
as one object. The key step in GAC-schema is the calculation of a ‘supporting tuple’ for a variable’s value, a
set of values of the other variables in a constraint allowing the given value. When expressed as one object in an
algebra, the calculation of a supporting tuple becomes a question on the existence of an object in the algebra.
Algebraic propagation algorithms will therefore be based on calculating these tuples directly from the algebra in
GAP. In fact, it will not be necessary to pass constraints from the algebraic model to the constraint system at
all, eliminating many of the disadvantages listed earlier. Instead, we can make calls toGAP as part of the GAC-
schema algorithm when new supporting tuples are needed, propagating results to other constraints not expressed
algebraically. This will significantly speed search, and lead to improved propagation. The result will be a fully
integrated Algebraic Constraint Programming language.

The research directions I have proposed above are clear cut and achievable. However, the research also has risks
that I would not wish to minimize. I would highlight one particular risk. The new propagation algorithms might
not be able to perform significantly more efficiently than standard techniques. Indeed, Régin’s algorithm for All-
different is so good that it is unlikely to be beatable. My belief is that we can obtain general algorithms for many
cases that will greatly improve on existing technology where no account is made of algebraic structure. This will
significantly improve constraint programming because the number of constraints where special algorithms are
available is a tiny fraction of the constraints used every day in constraint programming.

References
[1] C. Bessìere and J.C. Ŕegin. Arc consistency for general constraint networks: Preliminary results. InPro-

ceedings IJCAI-97, pages 398–404, 1997.
[2] The GAP Group, Aachen, St Andrews.GAP – Groups, Algorithms, and Programming, Version 4, 1998.

(http://www-gap.dcs.st-and.ac.uk/˜gap) .
[3] I.P. Gent, S.A. Linton, and B.M. Smith. Symmetry breaking in the alien tiles puzzle. Technical Report APES-

22-2000, APES Research Group, 2000. Available from http://www.dcs.st-and.ac.uk/˜apes/apesreports.html.
[4] I.P. Gent and B.M. Smith. Symmetry breaking in constraint programming. In W. Horn, editor,Proceedings

of ECAI-2000, pages 599–603. IOS Press, 2000.
[5] P. Van Hentenryck.The OPL Optimization Programming Language. MIT Press, 1999.
[6] J-C Regin. A filtering algorithm for constraints of difference in csps. InProceedings AAAI’94, pages 362–

367, 1994.


